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ABSTRACT

In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the
nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local for-
ward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward
evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned
with when the given state can be predicted before this state happens. From the results, there is a negative correlation between
the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward
predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each
state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states.
Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is
dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system,
the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial
perturbations increase.
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Article Highlights:

• Two new concepts—forward and backward predictabilities—are introduced and their algorithms given.
• Local forward and backward predictability limits are correlated negatively, which results from the local conservation of

forward and backward predictability limits.
• The local conservation value of forward and backward predictability limits depends on the complexity of chaotic systems

and the magnitude of initial perturbations.
• For a single chaotic system, a larger magnitude of initial perturbations results in a lower conservation value; and for different

chaotic systems, a more complex system has a lower conservation value when the magnitudes of initial perturbations are
the same.

1. Introduction

The atmosphere is a complex nonlinear system, meaning
that forecasts are sensitive to the initial state. Small errors in
the initial state are amplified greatly in a short time, which

∗ Corresponding author: Ruiqiang DING
Email: drq@mail.iap.ac.cn

means that the atmospheric predictability has a certain time
limit, defined as the predictability limit (Lorenz, 1969a). Be-
yond the predictability limit, the prediction skill is so low
that the forecast becomes useless. It is therefore important to
study the predictability of the atmosphere, as this can inform
operational forecasting.

The problem of atmospheric predictability was classified
into two main types by Lorenz. The first type of predictabil-
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ity focuses on the growth of initial errors, and the second
type is concerned with model errors. There has been much
research into the two types of atmospheric predictability us-
ing nonlinear theory and numerical simulation (Thompson,
1957; Lorenz, 1965, 1982, 1996; Chou, 1989; Nese, 1989;
Yoden and Nomura, 1993; Ziehmann et al., 2000; Mu and
Wang, 2001; Mu et al., 2002; Chen et al., 2006; Zou et al.,
2006; Ding and Li, 2007; Peng et al., 2011).

Dalcher and Kalnay (1987) pointed out that the dou-
bling time of small errors is not a good measure of error
growth because of its sensitivity to the method of extrapo-
lation. Also, they suggested that the saturation or asymptotic
value of root-mean-square error provides a better measure of
the predictability limit. Ding et al. (2008) used the mean local
relative growth of initial error (LRGIE) to quantify the local
predictability limit of chaotic systems based on the nonlinear
local Lyapunov exponent (NLLE) method. In their views, if
the initial state xxx(t0) and initial perturbations δδδ(t) are given,
the local predictability of the chaotic system will be lost after
the mean LRGIE reaches an asymptotic value or saturation at
the future state xxx(t1). Then, the evolution time from t0 to t1 is
determined as the local predictability limit starting from the
initial state xxx(t0). Here, we refer to this type of predictability
as the local forward predictability, and the local predictability
limit is called the local forward predictability limit. However,
if a state xxx(t0) and initial perturbations δδδ(t) are first given,
then how can this be determined when the given state can
be predicted before it happens? We refer to this type of pre-
dictability problem as the local backward predictability. To
quantify local backward predictability, first we need to find
the corresponding initial state xxx(t−1) of the given state. When
the corresponding initial state xxx(t−1) is found, the time from
the state t−1 to t0 is determined as the backward predictability
limit of the given state xxx(t0). Figure 1 shows the local forward
and backward predictability of state xxx(t0). At the initial mo-
ment t0, the large number of initial errors δδδ(t) with the am-
plitude and different directions are superposed on the initial
state xxx(t0). When the mean LRGIE reaches saturation at mo-
ment t1, the local forward predictability limit of initial state
xxx(t0) can be determined as t1− t0. If the large number of initial
errors δδδ(t) with the amplitude and different directions are su-
perposed on the initial state xxx(t−1), the mean LRGIE reaches
saturation at time t0. The local backward predictability limit
of a given state xxx(t0) can be determined as t0− t−1.

The initial state xxx(t0) and perturbations δδδ(t) are the cause
and the state xxx(t1) is the result in local forward predictability,
while the given state xxx(t0) is the result and the corresponding
initial state xxx(t−1) that is searched for is the cause in back-
ward predictability. Therefore, the backward predictability is
an inverse problem of the forward predictability.

The forward predictability focuses mainly on the for-
ward evolution of initial errors superposed on the initial state
over time, while the backward predictability is mainly con-
cerned with how to find the corresponding initial state of the
given state. When the corresponding initial state is found,
the backward predictability limit of the given state is de-
termined. Forward predictability has been studied intensively

Fig. 1. Schematic diagram of local forward predictability (solid
line) and backward predictability (dashed line) of the state xxx(t0).
t0 is the moment of the initial state xxx(t0). t1 is moment of the fu-
ture state xxx(t1) where the mean LRGIE superposed on the initial
state xxx(t0) reaches saturation. t−1 is the moment of the corre-
sponding initial state xxx(t−1) of which the mean LRGIE reaches
saturation at the given state xxx(t0). The circle diameter is the ini-
tial error size.

(Lorenz, 1965, 1969a, b; Leith, 1971; Dalcher and Kalnay,
1987; Farrell, 1990; Mukougawa et al., 1991; Toth, 1991;
Yoden and Nomura, 1993; Simmons et al., 1995; Trevisan
and Legnani, 1995; Feng et al., 2001; Mu and Wang, 2001;
Gao et al., 2003; Mu and Duan, 2003; Mu et al., 2007; Ding
et al., 2008; Duan and Mu, 2009). In studies of predictabil-
ity, researchers are more concerned with the predictability of
extreme states, like El Niño events, which have significant
impacts on the variation in climate. Based on climate mod-
els, much research has been carried out on the predictability
of extreme events. Also, researchers have obtained lots of re-
sults on the limited lead times of these extreme events (Luo
et al., 2008). However, climate models are imperfect and un-
certainties remain in the simulation of atmosphere. So, we
cannot obtain the potential backward predictability estimated
by climate models. However, few theoretical methods have
been used to investigate the backward predictability to date.
Therefore, an approach based on the NLLE (Ding and Li,
2007; Ding et al., 2008; Li and Ding, 2011b) is introduced
here to study the backward predictability of a given state in
a chaotic system. If the backward predictability is obtained,
this tells us when the specific states, especially the extreme
states, can be predicted before they happen. It may provide
a theoretical reference to the prediction of extreme events in
climate modeling.

2. Methods

2.1. NLLE
In an n-dimensional nonlinear dynamical system, the evo-

lution of initial perturbations δδδ(t0) is governed by

δδδ(t0+τ) = ηηη(xxx(t0), δδδ(t0), τ)δδδ(t0) , (1)

where δδδ(t)= (δ1(t), δ2(t), . . . δn(t))T represents perturbations at
time t, ηηη(xxx(t0), δδδ(t0), τ) is the nonlinear error propagator that
propagates the initial perturbations δδδ(t0) forward to the per-
turbation δδδ(t), and xxx(t) = (x1(t), x2(t), . . . xn(t))T is the state
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vector. τ is integral time. Then, the NLLE is defined as

λ(xxx(t0), δδδ(t0), τ) =
1
τ

ln
‖δδδ(t0+τ)‖
‖δδδ(t0)‖ , (2)

where λ(xxx(t0), δδδ(t0), τ) depends on the initial state xxx(t0) in
phase space, the initial perturbations δδδ(t0), and the integral
time τ. The NLLE represents the average nonlinear growth
rate of initial errors from t0 to t0 + τ, which is an advantage
over the traditional Lyapunov exponent based on linear er-
ror dynamics (Lacarra and Talagrand, 1988). The NLLE ap-
proach has been widely applied in research into atmospheric
and oceanic predictability (Ding and Li, 2009; Ding et al.,
2010, 2015; Li and Ding, 2011a, 2013; Zhou et al., 2012;
Duan et al., 2013).

2.2. Determination of the forward and backward pre-
dictability limits

2.2.1. Forward predictability

If a large number of random initial perturbations with the
same magnitude but different directions are superposed on
the initial state xxx(t0), the local ensemble mean NLLE can be
used to investigate the local average error growth of chaotic
systems. Given that a large number of initial perturbations
with amplitude ε lie on an n-dimensional spherical surface
centered at the initial point xxx(t0),

δδδT(t0)δδδ(t0) = ε2 , (3)

and the local ensemble mean NLLE of random initial per-
turbations superposed on the initial state xxx(t0) within a finite
time τ can be given by

λ̄(xxx(t0), τ) = 〈λ(xxx(t0), δδδ(t0), τ)〉N , (4)

where 〈 〉N denotes a local ensemble average of samples
whose size N is sufficiently large (N→∞). The mean LRGIE
can be obtained by

Ē(xxx(t0), τ) = e(λ̄(xxx(t0),τ)τ) . (5)

For the initial state xxx(t0), Ē(xxx(t0), τ) increases with time
τ and finally reaches the state of nonlinear stochastic fluctu-
ation, indicating that almost all information from the initial
state is lost and the forecast becomes meaningless. The for-
ward predictability limit of the initial state xxx(t0) can then be
determined as the time at which the mean LRGIE reaches
95% of the saturation level. As an example, Fig. 2 shows the
variations of NLLE, λ̄(xxx(t0), τ) and logarithm of Ē(xxx(t0), τ)
in the Lorenz63 model with initial perturbations δδδ(t0) = 10−5

as a function of time τ, where the initial state is xxx(t10000).
From Fig. 2a, λ̄(xxx(t0), τ) fluctuates intensely in the initial pe-
riod. Afterwards, it fluctuates relatively slowly and decreases
asymptotically to zero. From Fig. 2b, after the zigzag growth
process, Ē(xxx(t0), τ) finally levels out and enters the nonlin-
ear stochastic fluctuation regime with a saturation value (Fig.
2b). According to the definition, the forward predictability
limit of the initial state xxx(t10000) is determined as 14.

2.2.2. Backward predictability

In the backward predictability, the evolution of small per-
turbations is still governed by Eq. (1) in an n-dimensional
nonlinear dynamical system. The time of the given state t0
and initial perturbations δδδ(t0 − τ) are known, but the time of
the initial state t0 − τ is unknown. So, the growth of initial
perturbations in backward predictability is expressed by

δδδ(t0) = ηηη(xxx(t0−τ), δδδ(t0−τ), τ)δδδ(t0−τ) , (6)

where δδδ(t0−τ)= (δ1(t0−τ), δ2(t0−τ), . . . δn(t0−τ))T is the ini-
tial perturbations that are first given, ηηη(xxx(t0 − τ), δδδ(t0 − τ), τ)
is the nonlinear error propagator that propagates the ini-
tial perturbations δδδ(t0 − τ) forward to the perturbation δδδ(t0),
xxx(t) = (x1(t), x2(t), . . . xn(t))T is the state vector, and τ is inte-
gral time. Then, the NLLE in backward predictability is de-
fined as

λ(xxx(t0−τ), δδδ(t0−τ), τ) = 1
τ

ln
‖δδδ(t0)‖
‖δδδ(t0−τ)‖ , (7)

Fig. 2. An example in the Lorenz63 model with an initial state xxx(t10000) and magnitude of initial perturbations
ε = 10−5: (a) local ensemble mean NLLE; (b) logarithm of LRGIE. The dashed line represents the saturation
value. Nstep is the integration step.
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where λ(xxx(t0−τ), δδδ(t0−τ), τ) depends on the given state xxx(t0)
and the corresponding initial state xxx(t0−τ) in phase space, the
initial perturbation δδδ(t0−τ), and the integral time τ. Similarly,
the mean LRGIE in backward predictability can be expressed
as:

Ē(xxx(t0−τ), τ) = e(λ̄(xxx(t0−τ),τ)τ) . (8)

Therefore, to determine the backward predictability of the
given state, the corresponding initial state should be found
first. But then how is the corresponding initial state found?
Here, we use the traversing method. That is, we study the
growth of initial perturbations by superposing the initial per-
turbations on previous states before the given state. Once the
mean LRGIE reaches saturation at the given state, this pre-
vious state is the corresponding initial state. In a continuous
time series of an observed dataset (x1, x2, . . . , xn), xn is the
given state and the initial perturbations are δδδ(t0 − τ). Firstly,
we superpose the initial perturbations δδδ(t0 − τ) on the previ-
ous state xn−1. If the LRGIE reaches saturation at the given
state xn, then the state xn−1 is the corresponding state being
searched for. Otherwise, we superpose the initial perturba-
tions δδδ(t0−τ) on the previous state xn−2, and confirm whether
the LRGIE reaches saturation at the given state xn. In this
way, we can find the corresponding initial state. If the state xm
is found as the corresponding state, the backward predictabil-
ity limit of the given state xn is defined as

T = tn− tm . (9)

For cases of only one corresponding initial state (Fig. 3a),
it is easy to determine the backward predictability limit of the
given state. However, sometimes there may be multiple previ-
ous states residing in the same attractor whose LRGIEs reach
saturation at the given state. Figure 3b shows that there are
three previous states whose LRGIEs all reach the saturation
at the given state xn. The terms tm, tk and tr are the moments
of the three corresponding initial states, respectively, and tn is
the moment of the given state. In this case, we always choose
a state that maximizes the backward predictability limit of the
given state, as the corresponding initial state. So, the previous
state xm is the corresponding initial state. Also, the backward
predictability limit of the given state xn can be expressed by
Eq. (9).

In a limited range of a time series dataset, we use the
traversing method to find multiple previous states of which
mean LRGIEs reach saturation at the given state. Thus, we
consider whether there might be more multiple previous
states of which LRGIEs reach saturation at the given state
if the length of the data is larger. We still take the contin-
uous time series of observed data, (x1, x2, . . . , xn) as an ex-
ample. If there are more previous states supplemented into
the time series data, the new time series of observed data
is (x−n, . . . , x−1, x0, x1, x2, . . . , xn). In the original time series
data, the previous state xm is the corresponding state. Thus,
we choose the state xm−1 to superpose the initial perturba-
tions upon. The mean LRGIE reaches saturation before the
given state xn. Also, when we choose more previous states
before the state xm−1, all the LRGIEs reach saturation before
the given state. Therefore, although there are more previous
states supplemented into the original time series data, the cor-
responding initial state does not change, nor does the back-
ward predictability limit of the given state. Taking the same
state xxx(t10000) in the Lorenz63 model as an example, the mag-
nitude of the initial perturbation δδδ(t0) is 10−5. The backward
predictability limit of the state xxx(t10000) is about 11, which
differs from its forward predictability limit (about 14).

3. Results

We investigate the forward and backward predictability
limit of states in two models formulated by Lorenz. The
Lorenz63 model with three variables was designed for the
study of atmospheric convection (Lorenz, 1963), while the
Lorenz96 model with 40 variables was developed to investi-
gate model problems in data assimilation (Lorenz, 1996).

Figure 4a shows the variations in the local forward and
backward predictability limits of 2000 consecutive states in
the Lorenz63 model with the magnitude of the initial per-
turbations δδδ(t0) = 10−5. From Fig. 4a, the variation tendency
of the local forward predictability limits is opposite to that
of the backward predictability limits for these states. When
the forward predictability limits are relatively high (low),
the backward predictability limits are relatively low (high).
Furthermore, a scatterplot of the forward and backward pre-

Fig. 3. Schematic diagram of the determination of the local backward pre-
dictability for (a) only one previous state and (b) multiple previous states. tn
is the moment of the given state xxx(tn). tm, tk and tr are the moments of three
corresponding initial states xxx(tm), xxx(tk) and xxx(tr), respectively.
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dictability limits of these states also shows the negative corre-
lation between the forward and backward predictability lim-
its (Fig. 4b). When the forward predictability limits are rel-
atively high, the backward predictability limits are relatively
low, and vice versa. Figure 5 shows the spatial distributions of
local forward and backward predictability limits of the 2000
consecutive states in the Lorenz63 model. From Fig. 5, we
can see that when the forward predictability limit of a state
on the attractor is high, its backward predictability limit is al-
ways low, on the whole. Also, each butterfly attractor wing
also shows the negative correlation. The correlation coeffi-
cient of the forward and backward predictability limits for the
2000 consecutive states is −0.35. According to the Student’s
t-test, the negative correlation between the forward and back-
ward predictability limits is significant at the 99% confidence
level. Therefore, there is a negative correlation between the
forward and backward predictability limits.

Previous studies have found that the magnitude of initial
perturbations has an impact on forward predictability limits.
When the magnitude of initial perturbations is large, the for-

ward predictability limits are low, and vice versa. We find that
the magnitude of initial perturbations has the same impact
on backward predictability limits. That is, the backward pre-
dictability limits increase as the magnitude of initial perturba-
tions decreases. We take the state xxx(t10000) in the phase space
of Lorenz63 and Lorenz96 models as an example. Figure 6
shows the impact of magnitudes of initial perturbations on
forward and backward predictability limits of state xxx(t10000)
in the Lorenz63 and Lorenz96 models. From Figs. 6a and b,
the backward predictability limit decreases as the magnitude
of initial perturbations increases, which is same as the impact
of magnitudes of initial perturbations on forward predictabil-
ity limits. Therefore, the forward and backward predictability
limits decrease as the magnitudes of initial perturbations in-
crease.

Figures 7a and b show the variations of the sums of local
forward and backward predictability limits over 2000 states
in the Lorenz63 and Lorenz96 models. It can be seen from
Figs. 7a and b that the sums of forward and backward pre-
dictability limits of states in two models both fluctuate around

Fig. 4. (a) Local forward (black) and backward (red) predictability limits of 2000 consecutive states in the
Lorenz63 model with initial perturbations δδδ(t0) = 10−5, and (b) a scatterplot of the local forward and backward
predictability limits of these states.

Fig. 5. Spatial distributions of local (a) forward and (b) backward predictability limits of 2000 consecutive
states on the attractor in the Lorenz63 model with the magnitudes of initial perturbations δδδ(t0) = 10−5.



674 FORWARD AND BACKWARD PREDICTABILITY VOLUME 36

Fig. 6. Variation in the two types of local forward (blue) and backward (red) predictability limit with the mag-
nitudes of initial perturbations in the (a) Lorenz63 and (b) Lorenz96 model. σ is the initial perturbations.

Fig. 7. Sums of local forward and backward predictability limits of 2000 consecutive states in the (a) Lorenz63
and (b) Lorenz96 model with initial perturbations as 10−2 (blue) and 10−5 (red), and the average values (AV)
for six groups in the (c) Lorenz63 and (d) Lorenz96 models with initial perturbations δδδ(t0) = 10−2.

a constant value for a fixed magnitude of initial perturbations.
Here, the constant value C is the average value of the sums
of forward and backward predictability limits of 2000 states.
The average values are different when the magnitudes of ini-
tial perturbations are not the same in either model.

To verify whether the average value varies with the num-
ber of states in the ideal models, 12 000 consecutive states in
the Lorenz63 and Lorenz96 models are each equally divided
into six groups, respectively. Every group contains 2000 con-

secutive states. Figures 7c and d show that the average values
remain almost unchanged for different groups of states. In the
Lorenz system models, the average values of six groups are
shown in Table 1, with the magnitude of initial perturbations
as 10−2. From Table 1, the average values in every group
of either Lorenz system model are almost the same. Also,
the average value, 12.4, of the sums of local forward and
backward predictability limits of 12 000 states is close to or
the same as the average values of every group. It indicates that
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Fig. 8. Variation of average values (AV) with the magnitudes of initial perturbations δδδ(t0) in the (a) Lorenz63
and (b) Lorenz96 model. σ is the initial perturbations.

Table 1. Average values of six groups in the Lorenz63 and Lorenz96
models with the magnitude of initial perturbations as 10−2.

Model Average values in 6 groups

Lorenz63 12.1 12.4 12.4 12.2 12.6 12.5
Lorenz96 10.6 10.3 10.6 9.9 10.9 10.6

the average value is constant when the states are sufficient
with a fixed magnitude of initial perturbations. That is,

Tf +Tb ≈C , (10)

where C is the average value of the sums of local forward
and backward predictability limits of sufficient state, and Tf
and Tb are the local forward and backward predictability lim-
its of states, respectively. Therefore, the local forward and
backward predictability limits are conserved approximately.
Also, it is because of the approximate conservation of local
forward and backward predictability limits that the forward
and backward predictability limits are negatively correlated.

From Figs. 7a and b, when the magnitude of initial per-
turbations is 10−2 in the Lorenz63 and Lorenz96 models, the
corresponding average values are 12.5 and 10.6, respectively.
When the magnitude of initial perturbations is 10−5, the cor-
responding average values are also not the same. With the
same magnitude of initial perturbations, the average values
of the Lorenz96 model are lower. Therefore, for different
chaotic systems, the corresponding average values are dif-
ferent, although the magnitudes of initial perturbations are
same, indicating that the average value is dependent on the
complexity of chaotic systems. A more complex chaotic sys-
tem has a lower average value.

From Figs. 7a and b, it can also be seen that the aver-
age values of either model are larger when the magnitudes
of initial perturbations are lower. Also, Fig. 8 shows the cor-
responding average values of different magnitudes of initial
perturbations in both models. From Fig. 8a, the average val-
ues are lower when the magnitudes of initial perturbations
are larger. The same situation applies to the Lorenz96 model.

Therefore, in a single chaotic system, the average value de-
pends on the magnitude of initial perturbations. The average
values decrease as the magnitudes of initial perturbations in-
crease.

4. Conclusions and discussion

In this work, two types of predictability—forward and
backward predictability—are proposed, and then the NLLE
approach is applied to the Lorenz63 and Lorenz96 models to
quantitatively estimate the local forward and backward pre-
dictability limits of states. The results show a negative corre-
lation between the forward and backward predictability lim-
its. Also, the local forward and backward predictability limits
decrease as the magnitudes of initial perturbations increase.
The sums of the local forward and backward predictability
limits tend to fluctuate around their average value, which re-
sults in the negative correlation between local forward and
backward predictability limits. The average value remains
constant when states are sufficient. Furthermore, the average
value not only depends on the chaotic system, but also the
initial perturbations. In a single chaotic system, the average
value is larger when the magnitude of initial perturbations is
smaller. For different chaotic systems, more complex systems
yield lower average values if the magnitudes of the initial per-
turbations are same.

In future work, we intend to apply the NLLE approach
to research into real weather and climate systems, especially
extreme weather and climate events. The aim is to obtain
the backward predictability of extreme weather and climate
events, which may provide a theoretical reference for opera-
tional forecasting.
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